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SUMMARY ,&(55!¢

Consideration is given in the present work to one-impulse
flights between Keplerian orbits of given boundary in the gravita-
tional field of the Sun. All of the three orbits are coplanar. The
initial mass is minimized. The pressure of sunlight is taken into
account on the intermediate orbit of the flight. Analytical solu~-
tions are obtained in the special cases of circular boundary orbits
and on boundaries of orbits with small eccentricities. CIL&J,

*
* *

Wé shall consider the question of constructing one-impulse
trajectories of interorbital flights, with minimum mass consumptien,
in the Sun's gravitational field of a spherically-symmetrical, light-
emitting central body. The perturbing effect upon the cosmic object
by the celestial objects situated on the given boundary Keplerian
orbits will be neglected. It is assumed that all three orbits — the
initial, intermediate and final — lie in the same plane and that the

motion along them takes place in a single direction.

« ENERGETICHESKI OPTIMAL'NYYE POLETY S UCHETOM VLIYANIYA SVETOVOGO
DAVLENIYA.



On the one hand, the pressure of light may be considered as
a small corrective factor, namely in the course of flights by standard
spaceships. On the other hand, in case of flights of interplanetary
probes, consisting of thin hollow shells — balloons, filled with low=
pressure gas and covered by an outside coating, well reflecting the
light, it becomes comparable in magnitude with the force of attraction
of the Sun. Ehricke [1] proposed to utilize such shells for the inves-
tigation of space of our solar system, and also for the transfer of
useful payloads. These probes are characterized by their simplicity,
small weight and capability of carrying a payload. Such objects are
very bright, thereby increasing the probability of their successful
tracking by telescopes. The shell~sondes may be launched from the

ground, as well as from spaceships or artificial satellites.

1. - LIGHT PRESSURE

Let us find the principal vector and the principle moment of
light pressure forces acting upon a fixed body with irradiated surface S.
In deriving the formulas in this part, we shall start from the quantum
theory of light and we shall neglect the effect conditioned by the non-~
isotropy of over-irradiation.

«e shall iniroduce a fixed system of coordinates x,y, 2; the
axis 2z coincides witii the heliocentric radius-vector of the irradiated
body, that is, it is directed =zlong the parallel light beam incident
upon it. Let us outline on body surface the elementary area (dS), R
being its reflection factor. Assume ?:: {S"l ;} as being the radius-
vector of any point on (dS), the origin of this vector being at the
point @ of the irradiated body; « is the angle of incidence, equal
to reilection angle; P is the angle between tne proiection of the
external normal to the area on the plane xyz and the axis x, counted
from the axis x in the positive direction. The elementary variation of
the quantity of motion for the time 4t will then be

dK = (M,ce, — M, ce) dt, (1)
where ¢ is the speed of light; :a_is the unitary ort of the incident




beam; ‘52 is the unitary ort of the direction of the reflected beam of
rays; M; and M, are respectively the masses of photons, incident upon
the area (dS) and reflected from it per unit of time.

Starting from the principle of mass and energy equivalence, we
shall find

. F .
M, = 5 cosads, M,=R£—cpsad$. 2)

Here E is the solar constant (power of solar radiation corresponding
to area unit) for the area situated at the distance r from the Sunj it
can be computed as follows :

E; r
E= 66

» Egry =0.302-10" erg/cec 3)

where r is the average distance between Earth and Sun, and Eé is the
solar constant for the distance r s Utilizing the theorem for the gquan-
tity of motion, we shall find the force f of lisght pressure upon the
area (dS)

f,=—R-§-sin2zcosacospdS,.

5 —Rif—six_nzlacosasln?ds,_ 4)

fs=%-(1 + Rcos 22) cos «dS. i

]

After that it is easy to find the projections of the principal
vector F and of the principal moment I relative to ‘the point O on the

axis of the coordinates

Foe=— %’f:-j'j'kcos’azfln acosﬁds.‘

Y= “_“RCOS’GSinasmpdS (5)

)
f,:-;—f 1+ R§0s2a)cqsad8,
()

-f—ﬁh(l + R cos 2a) -+ C R sin 2a'51n B] cos adS,

L,-—--———jj[CRsm2acosﬂ+€(l+Rcos2a)lcosads - (6)
) : ”

JjR(qcosP——EsinB)sm'%cosadS.
2 .

B
L,==




tie shall find the light pressure upon a spherical body of radius
R with a reflection factor R, identical for the entire surface. Let us
introduce on body surface a spherical system of coordinates with origin
at the center of the sphere ( ¥ is the latitude, ¢ is the longitude);
besides, we shall count the longitude ¢ from the direction at the Sun.
Then,

COS & == C08 ¢ COS §. )

Because of symmetry, we shall reduce the system of light pressure
forces to the resultant force, anplied at the geometrical center of the
sphere and equal to

Exr:
Fr=—C8 <m0, | ®)

Therefore, the force acting upon a fixed irradiated spherical
body is directed along its heliocentrical radius-vector and is not depend-
ent on the latter's reflecting power — result quite analogous to the
result obtained by Radgiyevskiy [2]. Thus, a well reflecting coating
should only be applied to prevent excessive heating.

Remark l.- If the irradiated body moves with a velocity U,
both, the ma~nitude of light pressure force and its direction vary by
a2 quantity of the order X (for more details, see, for example, [2]).
Because of the smallness gf the last ratio, we shall neglect these varia-

tions,

2. - HELIOCENTRICAL TRAJECTORIES TAKING INTO ACCOUNT
THE LIGHT PRESSURE

Let us consider & body of mass m, moving in the fields of Newto-
nian gravitétion and of Sun's light radiation, the mass of which we shall
denote by M. The components Fx ’ Fy of light pressure forces will be
neglected, These components are exactly zero for spherical bodies.

k’::"', where k% is the
gravitational constant, while the force of light repulsion is I

2’

The force of attraction toward the Sun is




where for a sphere of radius R

. Esrd .
B=-22 up, ©

e .

while for other bodies, B ie easy to find utilizing formulas (3) and (5).
Writing the eocuation of relative motion of the irrasdiated body and assu-
ming that mgM, we shall find for its heliocentrical radius-vector T
2= MM =, B -
r=—7r+ﬁ—r. (10)
Let us introduce the "recuced" mess of the Sun
M =M(1 —?), an
where § is a parameter characterizing the "decrezse" of Sun's mass; it

is ecqual to

B .
3= . : (12)

Therefore, with a '"reduced" mass of the Sun all formulas of the

problem of two bodies will be valid. However, the guantity

K=kVM, (13)
should be formally substituted everywhere by a new one:
K=KV1—=2t. (14;

We shall assume, that the parameter 3€[0, 1). At § =1, the
gravitational attraction will be ecuilibrated by luminous repulsion, and
rectilinear inertisl flights are possible in sny direction. At ) >1l, the
irradiated bodies will fly out of the soler system along hyperbolae, in
vhich the Sun is located in the external focus. _

Let us estimate the cuantity ) for thin hollow spherical shell-
condes of radius R, with shell's thickness h and density Y. Assum.e
that the shell-sonde carries a payload of mass m,; then the total mass
of the sonde will be

| m=m, +4mR A - as)
and the parameter
e Egry=kt Egry
= Ric(mg+ 4xRNh) — K’c(;%-}ﬁh) .

@16)



If m°=0, § does not depend on the radius of the sonde, but only on
the product Yh. We shall compute a series of values for § at various h

and at Y =3 g/cm3, in the assumption, that m, is substantially smaller
than the mass of the shell itself:

.

§ o.5 0.1 0.05 0.01 0.005 0.001
h,mk 0,38 1.9 3,8 19.0 38.0 190

Thies estimate is in cualitative agreement with that conducted by EBhricke
f1l.

The constant elements of orbits with "reduced" Sun's mass shall
be called geometrical. We shall take for such elements

1 e
— —_— T 17)
P— /T' q= 1 s O, ’ (

where | is the focal paremeter; e is the eccentricity; @ — the angu-
lar distance of the pericenter and T is the time of passing through the
pericenter, We shall take the polar angle ¥ for the independent variable
determining the position in the orbit, so that the positive direction of

the count coincide with the direction of motion,

The quantities related to the osculatiﬁg orbit will be provided
with the index "ock". Then, we shall have :

U, =Ko sin (¥ — wo,) =K V1 —ig sin (8 —w), (18)
Us=K [Pocx + 9ocx €03 (§ — 0o )| =K VT —8[p+gcos (¥ ~w)], (19)
=Py + Pouloex €05 (B — @) =p'+pgcos(d—w),  (20)
' . \ :
¢=K(t=-t.)=._£ oo
L " % '
~ V= .lé.p(p-i-qcow)’ ’ - @D

where ¢,, tz are the moments of time responding to polar angles ¥, ,1’3
respectively; Ur, Uy are the radial and the transverse velocity compo-
nents. Note that only the obvious dependence of the sub-integral function
on Vv should be taken into account in the first integral. Both integrals
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in (21) are easily taken (for example, for the elliptical motion through
the eccentrical anomalies : the osculating one for the first integral,
the geometrical for the second). From the correlations (18)— (21) it is
easy to find

S

P (22
Tou={ 4% e
N (S = e
. a |
y - r+,<,/l.—_,6, ST K S e @)

and at the same time, the signs of the numerator and denominator in for-
mula (24) coincide with the signs of sin 0, ck and cos Wock o respectively,
while when computing the second integral in formula (25), the osculating
elements should be considered as constant. Note that all the osculating
elements are periodical functions of the angle & with a period 2«

(at elliptical motion in geometrical elements).

3, - SETTING UP THE PROELEM OF OPTIMUM ENERGY FLIGHT TAKING
INTO ACCOUNT THE INFLUENCE OF LIGHT PRESSURE.
SYSTEM OF INDISPENSABLE CONDITIONS

It is recuired to materialize the flight of a cosmic device
between pre-assigned boundary orbits with the aid of a single impulse -
that over the initial orbit. The value of the characteristic velocity of
this impulse is minimized, which assures a minimum fuel consumption. All
the orbits are coplanar. The light pressure is taken into account only
over the intermediate orbit. Depending upon the concrete physical problen,
we may use of the cosmic device the above-described shell-sonde, or any
other spaceship, for which light pressure must be taken into account.

Assume that the initial orbit has for elements Pi ¢ ®. 71,  and

the final one - P Gs, 92 I3, It is assumed that in heavenly objects

the ratio of effective cross section to mass on these orbits is small,




and that the light pressure has practically no effect on orbit elements.

A boost-impulse is applied at the time t; s when the polar angle
is "’1' as a result of which the spaceship passes to flight's intermediate
orbit. The latter intersect the final orbit at the time ¢t,, at polar
angle ¥,, and the spaceship collides with the heavenly object situated
on the final orbit. '

At pre-assigned elements of boundary orbits it is necessary to de-
termine the intermediate orbit of the flight, that is, to find its geometri-
cel elements p, q, @ and also the angles V;,7, and the moments of time t;,
t;, in such a way, thet the magnitude of the characteristic velocity of
the initial impulse have a minimum, Upon determinatiom of these unknowns

we £hall obtain for the moment of passing tarough the pericenter

9~
_ 1 y dy
Ky T-3% ‘5 P(p+gqcosvp °

T=t, i=1, 2, (26)

and the osculating elements can be computed by the formulas (22) ~ (25).
The following conditions should be fulfilled:

?1=p*+pg co3 (%, — &) — p? ~ p,q, cos (8, — ;) = 0, @7)
Pr=p"+pgcos(¥, — ®)—p} — pyg,cos (B — w))=0, - (28)
=%1+¢—¢g—a=0, - (29)

wiiere the function ¢ is exprescsed through the geometrical elements by the
formula (21), but

, 8.
d .
h=Kt—T)= S FGraeor (=12 %0)
¢=K(T’ - Tl). (31)

The correlations (27) and (28) inply the continuity of radii-vectors at
starting and finishins points, while the correlation (29) is the condition
of motion tivme coincidence prior to encounter at the final point along the
initial and intermediate orbits on the one hand, and along the final =
on the other..

The characteristic velocity AU of the initial impulse may be .
expressed through elements of the initial andimtermediate orbits (see [3]) :




for analosous operations), as follows :
loeer 2y R 2 T—8
AU=K{q-(1——o)—p’(l—o)+qf+3p§—2p§s______”' 5 -

— 299,V 1—3 cos (w; — @) —
1

—2¢, V1 —o[p+———p, /l ]cos (*h—m;)}T’ (32)

and for the inclinztion sngle of the thrust P ( counted from the trans-

versal in a direction opposite to that of the moiion) we have

tg@: qVy 1 —ésin (a‘ —m)—ql Siﬂ(&l—-ml)
1—3 )
(LLT=2 1) i+ g1 cos 0, —

, - (33)

the signs of the numerator and denorinator coinciding with those of, respect-

ively, sin § and cos .

We shall seek the minimum of the function

. (AU» 34
£y ©)
in the class of variables P, ¢, », §, 8,, which are dependent upon and

linked by the conditions (27) - (29), that is, we find ourselves in the
cless of tle conditional extremum of a function of finite number of varia-
bles. Introducing the constant multipliers A,,),',)u‘,, we shall compose the

Lacrange function

g+ 2 APy (35)

il

As is well known, the partial derivatives of the Lagrange function by all

variables must be zero

N [‘L +"’l"' }/-] ]sln(ﬂ ‘—“’1)+
+ Xy [21gs sin (8, — @) —pg sin (3, —o>1+x,( +"*°')
1,[pzq,sin(**sf-z_)—pqsm(&z—«»)l+1a (m‘;- ?,"5:) 0, (37)

0, (36)

00/00
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€2
—p P’i—:——g'v'-é-‘“f“qx(% - 1)’603 (& — @)+ {25+ ¢ cos ({"x—ﬁ)}j—
+1 12+ gcos (4 —w)] +1, =0, (38)
¢ VT =3 qicos(e — o)+ hpcos(y — o) +4pcos (B — o)+ A =0, (39)
— gg, sin (@, — ©) -1, pg sin (§; — ©) +- A, pg sin (8, — ©) 42, %=0¢ (40)

The obtained ecurtions (36) — (L0), alongside with the equations
(27) = (29) form a system of recuired conditions, consistins of eight
equations with eight unknowns: p, ¢, = 8, 8,2, A, ), These equations
ougnt to be resulved consistently.

Remark 2.~ If the problem under consideration does not account
for concrete motions, that is, if the initial configuration of heavenly
objects on boundary orbits is arbitrary, the condition (29) of motion time
coincidence before encounter at the final point should be dropped, and

we should postulate ,\3 =0 in the remaining system of seven equations.

Remark 3.- The light pressure on the final orbit is easily taken
into account., To that effect it is sufficient to estimate the elements
P2, Gs. ©;, T as geometrical, and to substitute in all equations the function
Y2 by ;
B=01—3
where 82 is the parameter § , computed for a heavenly object situated
on the final orbit.

4, - FLIGHT ALONG CIRCULAR ORBITS

Let the initial and final orbits be circular, respectively of
radii ry,r, and quantities q =0, q, =0,
It may be shown that from the system of necessary conditions, it
follows
A=0. (a1)
Therefore, we must resolve the problem first without taking into account
concrete motions; the solution will contain only the differences 171 -w,

¥, - w and, consequently, one of the angles V; ,d),& will be arbitrary.
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After that, it is easy to find from the condition (29) of motion

time coincidence before encounter, for example, the angle 1?1

4= [ — ) AP+ o,p3 — epi+ f23] (P2 — P3) @42
where -Y- is the motion time along the optimum oroit; f=94—98 is
K
the difference in the true anomalies of the starting and finishing peints.
Let us consider the problem of flight without taking into account
the concrete motions. It follows from equations (36), (37) that

Msin(d, —0)=0, Asin(§; —w)=0. - BN (2
The last equations may be satisfied by three methods, since the condi-
tions & =0, §=O, contradict the equation (39).
1lst Method.- Let us postulate
sin (§; —0) =0, sin(¥; — @) =0. (49)
In this case the only solution (with a precision to arbitrary choice of

the angle of the start point '\71) iz the Homan ellipse in geometrical
elements., For it ‘

2 2 2 2

P|+p2 Py—Ps
p—_.—l/ y 9= F -, 45
2 V 2(oi+ 7)) (45)

4 3 3 I x

. Y i—3—pp PpvVTI=8—p

= e — L N= i( > ), (46)
AU=L‘,{’AIP, Vi—s—p|. . (a7

The upper signs respond to the case of flights to orbit of greater

radius
<p <Pu 3‘1-.—_."0, 82=0+l, =0 at p<p,V1——6,

ry>n, P i
: O==x at .p>n Vl —8&; (48)

the lower ones — to the cese 0of flights to orbits of lesser radius

r,<ry, ps>p>p, Hh—=e—zx, =, O==x, - (49)

2nd Method.- We shall satisfy the equations (43) in the
following manner :

sin (§; —w)=0, X=0. ‘ “(50)
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Fror the remairing egquations of the system of necessary conditions we
shall find

— T 4. P} (51)
p prl a! ‘I— r-“‘—l__a ]
2 _ 201
8, =w, cos(d,—w)=—t2"P1 U= (52)

2y
AU =0. 'p" (53)

If 8( 0.5,the solution exists only at

2a>n>n, Vi—®p<m<m O
but if § > 0,51t exists only at r,>r.

The escape tales place at pericenter of flight orbit; no additional
fuel consumption is recuired, and thet is why from the standpoint of energy
these orbits are more advantaseous than the Homan ellipse. During flights
of shell-sondes, it is sufficient to 1nf1ate, the shell in order to put them
in the obtezined orbits. Let us remérk, that at fg=]—r;Lz—3 the orbit obtained
vill coincide with the Homan ellipse; at § = 0.5 it will be a parabola,
and at 8 > 0.5 - a hvperbola, in both of which tie Sun will be situated

in the inner focus.

5rd Method. - In thir cace

A, =0, sin(¥,— 0)=0. (55)
The remaining equations of the system of necessary conditions will give
PO AT N b’ (. (56)
A PirsYyT—3s ° !
3__ .8 :
pi—py(1—13) . '
cos(d — )= , Sy=o.
R . (=) 1

Such orbits are only possible at
e <, P> P> op,, (58)
where 6 is the unicue positive root of the ecuation
o8}t =2(1—3). ) (59)
The finAishing point coincides with the flignt orbit pericenter., At rae‘zr,

the orbit obtained coincides with the Homan ellipse. The characteristic
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velocity and the tangent of thrust's inclination angle will be determined

as follows .

6 5 .
Au-_—K{st—2p§——:};-+2a(p%—p¥)}’, (60)

”_g [P} —pi01— 2)] sin (8 — =)

tg@:
(71 —p3)

(61)

The Homan-type flisht (45) — (49) is pocsible in the same interval
(58). Let us compoce the difference in the squares of characteristic velo-
cities on the Homan ellipse and on the new orbit (56) — (61); it is
R NAL LY
Pi+r; 3

2
- 2(1-—3)] >0. (62)

Concecuentlyr, ti:e ortits obtszined are more optimum than the Homan ellipse. »
Therefore, the function (34) takes the least vslue on orbits con-

sidered in the methods 2 and 3, provided the conditions (54) or (58) are

resvectively fulfilled, an¢ on the Homan ellipse (45) — (49) in the oppo-

gite csase.

Remark 4.~ There sny meny problems where the parameter § is a

smell quantityj in this case the apprroximate value of the quantity € is
1 43 :
o=1—a8— 84 ... (63)

5. = FLIGHT BET.E=N ORBITS OF SMALL ECCENTRICITIES

Assuming that q; and gq; are small, let us introduce the small pa-

rameter £ accordins to formulas
h=08 =4, (64)

We shall seek the solutions of the equetions (27) — (29), (36) — (40)
in the form of series by powers & j3 we shall denote by strokes the coeffi-
cients oi the series sought for at first powers &, At § = 0, analogous
expansions were obtained in the work [32].

The solution will be conducted in the assumption that Tye T2
do not lie in the regions (54) or (58), that is, we shall take the Homan

ellipse for the zero approximation.
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Assume now that at first the concrete motions are not taken into
account., We have in the apvroximation of the zero order relative to & a
unique solution — the Homan ellipse (with a precision to arbitrary choice
of one of the angles &, %, ®) , corresponding to the system (45) — (49).
The angular distance of the pericenter @ is determined from the first
order approximation with the help of the equations (36), (37) and (40), as

follows ¢ 23

’ 2 ’
a1 [lx +%" - ;-/I_T_a_] 8in @) — @) pohs S10 6y
I3 2, 2—’ e
qlpx[lﬁ--%—mlcos-x—w:hcosm

tgo=— (65)

The exact solution of the first order is given by the following formulas:

s 91P1€05 (4 — 1) + P cos (8 — wy)

~ * ' 66
4,91 (g F 29) €08 (8 — w1) + G4 p3(q £ 2p) 08 (8, — @3) (66)
= — e A .
o' = —::Sf'fxfc . hi=u'+A4, =o+B8,  (67).

. —(@FW)S. ' PRe—(g£2)S,
A = PR« “’;;,”’ T (68)

= [p—pVvi—1 ' -
sy ==t [ P +eVT=Y'+
: - Y T —8 8, — ‘
+91P1(2P Plc 1_:’3)‘:05(1 “1)}' (59)
pevVi —6(0; —w') q;p sin (§; — «;)
Q= — . 70
' = ThYi=t—p) pml/1—t1—p) (70)
. 4I|P1_p_ n . 2—3 . _
A== 7‘1’?[1.’1 +-P T ‘Vl—:i]sm O o‘),‘ 71)
B=F q;p,sln (83—uy)

prq ?

C q‘ (————!—’- —px)‘; $'q’) sin(¥; —o,) — q;l;p, sin (82 — w,), (72)

w=apn| g+ Hh— Vl ]cos(& —e))
B = g3PsCO8 (8, — 0,), o ‘ (?3)
fe=* ¢, €05 (}; — w)), ‘ :

oo/.o
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2

Ra=¢1{(1 - %) cos (¥, —w) +

L (A R R PR R A
S‘f-: + g1 cos(d —a) F (\—2)p —VT—d¢" (75)

The solution of the problem of an optimum energy one-impulse
flight without taking into account the light pressure (see [3]) with a
precision to terms of the first order £ is obtazined from the formulas
(45) —= (49) and (65) — (75), provided we postulate in the latter § = 0.
In the case vhern the parameter § is of the same order with eccentricities

of boundary orbits
0 =¢ed, (76)

the first order corrections to this solution, conditioned by light pressure
will be

P’=0, q’=0 4
o = 0; — &; — s 2‘]; q;P:PzP:(p, —p)3sin (m,.._'.,l) cost e ¥
{ 9171 [87° (P — ) + P2 — P P] c0s &1 — 4,5} P2 (Pr—P)cOS 0,
2 1 ()
. P v P
l":—éa." lzz_:s_;,ial'
p‘l

AU =F 5-¥&, @=0.

? J

Thus, the accounting of the effect of light pressure at a small
paraneter § and boundary orbits of small eccentricities has been reduced
to rotating the flight orbit by a magnitude of the first order relative ‘
to the orbit corresponding to the solution of the optimum problem without
taking into account the light pressure, The dimension and shape of the
orbit and the true anomalies of the starting and finishing points are
varying over it by magnitudes of the second order only.

Let us pass now to the solution of the problem, taking into account
the concrete motions. In the zero order approximation we have a unique
solution — the Homan ellipse (45) — (49), with equality (41) fulfilled,




and for the function ¥ we have :

=

¥= £} - (78)
Pr—g)? yT—2 :

The starting angle 13'1 is found from the equality (42) as follows :

A+A\T
6 — ( 21’2)2 1l =P -zp“-vapg ap} P} 9
lff n—7 L :

In the first order ap roximstion we shall find from the system

of necessary conditions for p', @', the very same formlas (66), and

for ¥y, 7, w we shall have

. A(plpev T3 —ppd) —Bplps VI—8—ppt) — Cpip. )’1—6

(80)‘

Hh=
= ana(Rl—p3) V13
5 _ A(rimy T3 —ppp— B(plpy v T—5—pp) — Cp,p,fl_—a )
nra(A—pr) vV 13 @8ty
o =2 (P VY T=8—ppl) — B (lps VI=3 — pp) — C ot pty T3 ‘
, " ana(R—-P)V T3 . 82
where VTTo— ~ V=T .
. A=A+ -2 =P ), B=Bx _P—PVI=3
W P Ty &
= 3= —_— 2 in(d; — e ! ¢, T
C= Wim + ﬁs"’#: ) 2‘125“'(34 - 1)
- YT ! , P2

The functions A and B are computed by the formulas (71), and

gips (Bt hy — ) s 0 —00) + 4, pabasin (ha— o)

%= P —p )

6.- CONDITION AT iiICH THE UTILIZATION OF HOLLOW SHELL-SONDES

FOR TRANSFER P
FROI THE.STANDPOINT OF ENERGY

Let us examine the guestion relative to the case, when it is
more advantageous from the viewpoint of fuel consumption to put a pay-~
load of mass my to final orbit with the aid of a shell-sonde, by compa-
rison withits direct placing to the corresponding flicht orbit,
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In the last case we may neglect the lirght pressure, We shall estimate
that one and the same characteristic velocity will be required in both
cases in order to o ercome the attraction of the heavenly body, from
which, or from whose satellite, the start takes place. Ve éhall denote
this characteristic veiocity by U. We shall limit ourselves to the case
of circular boundary orbits, with rp> rj. At ry > r, it is more advanta-
geous to dispatch the payload in such a fashion, that the resultant of '
licght repulsion forces be as small as possible.

At flight without tarines into account the lizht pressure the
Homan ellipse gives fuel consumption ite minimum. The characteristic

velocity of the initial impulse AU, is determined as follows :

The minimum value of the characteristic velocity et flight, tazking into

account the influence of light pressure (8 <05)is

AU=0 ot Z25>n>rn, 87)
— Knlp VT=3— .
sy = KelnVl-t=r) n>1og- (88)

Let c¢; be the outflow velocity of gases; then, as is well known,
AU+ U=cln 70—, AUp+U=cIn Za=mtlm (g9
where m, is the initial mass of the cosmic device at placing the payload
together with the shell-sonde; Am is the fuel mass variation at direct
placing of the payload into orbit; m is the mass of shell-sonde, for
which the following is valid :
m, = 4=R*1h. : (90).

At Am >0, it is more advantageous to use a shell-sonde; at Am <O
the lesser fuel consumption will take place at direct placing of the pay-
load into the orbit of the flight.

From the correlations (89) it is easy to find

AU+ T sU+T w4l
. <, 2
Am=my\e ©* —e " |J—m\e " —1], (91)

where AU AU are determined from (86)-(89). The last correlation allows
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at concrete values of T, & R, m,, p,, py, U  to estimate, which method
of payload delivery is preferable from the standpoint of energy.

The condition of lesser fuel expenditure at utilization of the
shell-sonde is obtained in the form

~

. AU

_my . efs—e O

X——,,,l—>—m;:——_-q', - (92)
eh e

It should, however, be borne in mind that the right-hand part depends on
the parameter §, which, in its turn, depends on X as follows :

E,r’

— 5 &
b=+ ' (%)

Formulas (92) and (93) allow to determine the dependence between y,h, %X,
Py Pos U sought for.

In conclusion, I avail myself of the opportunity to express my
sincere gratitude to my scientific guide, Prof. V. S.Novoselov, for his
constant help in the course of the work,

sss THE END ¢se

CONTRACT No, NAS-5-3760. : Translated by ANDRE L. BRICHANT

Consultants and Designers, Inc. on 11 - 12 June 1965
Arlington, Virginia
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